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Abstract

Suitable similarity transformations were used for reducing the generalizaiffusion equations to a class of singular nonlinear boundary
value problems. Similarity solutions are presented analytically and numerically. The results indicated that for eachtfigegeneral
diffusion fluxd(s) decreases with the increase of the power Mwand sharply with the increase f For 0< o < 1, 6(s) decrease with the
increase ofy, however, the behavior is quite opposite for 1.
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1. Introduction The one-dimensional (1-D) form of thév-diffusion
equation is
Transfer problems are of great interest in a wide range
of natural problems and industrial applications. In the sense [k(u)luxIN_lux]x =u; InG (1)

that some entity is transferred under the gradient of a

concentration-like quantity, we have, for the processes of *(0:0) =0, 0<I<T, u(x,00=0 x>0 (2)
this nature, the general relatia® = A - B. Here Q is the whereG = {(x.1): x>0, 0<¢ < T}, k) = 0in G. We
flux density vectorB is the vector function of concentration- limit ourselves into the physical meaning &f > 0. The

like _gradients, andi is a co_efficient in the function of time, problem can be thought of the unsteady heat conduction in
position and/or concentration. . .. asemi-infinite medium > O, initially at zero temperature.

In this paper we con5|(?vtirla generalized form of dif- \ypen timer > 0, temperature is applied and maintained
fusion for which B = Vul . Vu and A = k(u). This .., at the extremityx = 0, whereu denotes temperature, and
study serves as an introduction to further works deal with D) = —k()|u, [N —Lu, is the heat density per unit area.

”}e concegtratlog-(;:pdg?fde’_md|ffTuh5|on and certain ];_OrTS q Recently, Wang [2] and Zheng [4] have considered some
of space-dependemt-difiusion. These more compicate generalized diffusion equations similar to (1) at certain

types ofN—dlffusmn are |mmed|ately relevant to p_hyS|caI initial and boundary conditions. Existence and uniqueness
problems of interest, including the unsteady vertical heat - . . .
results for a positive solution are analytically established

transfer from a horizontal surface by (turbulent) free con- by emploving the similarity transformation and perturba-
vection, and the unsteady turbulent flow of a liquid with a y employing y : per
free surface over a plane [1] tion technique. However, the behavior and mechanism for
' diffusion and transfer are not understood at present time.
It may be seen that, wheN =£ 1, the generalized diffu-
“ This work has been supported by “Cross-Century Talents Projects” sion equation (1) is super-nonlinear because of the term
of Educational Ministry of China and the “973" key foundation under the k(u)|Mx|N_lux (N > 0, N # 1). Therefore, the problem is

contract No. G1998061510. difficult to study analytically and numerically. In present
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lation of the generalized/ -diffusion equations, which pro-
vide similarity solutions.

2. Converting into two-point boundary value problem
2.1. Smilarity transformation

Since the restriction of the classical solution is both

irksome and unnatural in many instances, we shall deal with
the solutions that may not have a derivative everywhere. It
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n /
/[—ﬁnw(n)Jrf(w(n))+/3/w(s)ds] ¢(n)dn=0

0

is convenient to present our problem in a so-called weak J (w(n) = Bnw ()

formulation.

We call a functioru(x, ) is a solution of Egs. (1), (2), if
u(x,t)is continuousinG = {(x,t): x >0, 0 <t < T}, with
limy_ou =0 and lim_ou = 0 a.e. (almost everywhere)
x > 0, andu(x,t) admits a weak first derivatives which
are locally integrable it Functionf (u) = k(u)|u,|Y ~tu,
is locally integrable inG. And for all sufficiently ‘good’
functiony (x, 1) € C3(G) (whereC3(G) denote the class of
first continuously differentiable function that vanish on the
exterior of a bounded set) such that

J[ 1= gy arar =o 3)
G

Setting u(x, ) = w(n) and ¥ (x,1) = g, n =
Cx"t#. WhereC, y, andpg are constants to be determined.
Substituting the above expressions into (3), by setling
y=1,andg =—1/(N +1) yields

f gD dy / &' () {Brwan — f(w(n) dn)

+ (g -17F dt)/qb(n)w(n)dn =0 (4)
Integrating/ g'(¢) - t=# dt by parts
/tﬁ’(n){—ﬁnw(n) + f(w(m))dn}
— / Bomwmdn=0 V¢ e C§(0, c0) (5)
Putting
n
—/tb(n)w(n) dn =/¢/(n)/w(S) ds dn (6)
0
we obtain
n
/¢’(n) [—ﬁnw(n) + fwm) +B / w(s) ds] dp=0
0
V¢ € C3(0, o) (7)

Integrating Eq. (7) by parts again and notinvg <
C3(0, 00) yields

V¢ € C3(0, o) (8)

Eq. (8) implies
n /
[—ﬂn(w(n)) + Flwm)+5 [ o) ds} =0 ©
0
It is now easy to see that
n
:—,B/w(s)ds+D a.e.inp>0 (10)
0

Upon a possible redefinition on a set of measure zero, (i)
flw(n)] — Bnw(n) is absolutely continuous locally in >
0, and (ii) (f[w(n)] — Byw(n)) = —Bw(n) holds almost
everywhere im > 0.

As w(n) is an absolutely continuous locally i > 0,
by hypothesis onu(x, t), it follows from (i), equation (ii)
is equivalent to

(f (w(m)) = pnw'(n) ae.ing>0
i.e., the nonlinear boundary value problem is derived as

[V + Dk(wm)|w' o) ' )] = —n-w' ()
O<n<+4o00) (11)
w(0) = o, w(+o00) =0 (12)

Conversely, ifw(n) is a solution of (11), (12), then
it follows from hypotheses (i) and (ii), and the function
u(x; t) = w(n) must be the solution of generalized diffusion
problems (1), (2). Therefore, in what follows, we shall
pay our attention mainly on the nonlinear boundary value
problems (11), (12).

2.2. Inverse function formulation

Let s = w(n) be a solution to the nonlinear boundary
value problems (11), (12). lfv(n) is strictly decreasing in
[0, +00), then w/(4+00) = 0, and the functio = y(s),
inverse tos = w(n), exists. We have alse = w(y(s))
on (0,0) andn = y(w(n)) on (0, +00). And w/(y(s)) =
1/y’(s) holds in (0, 0). Substitutingn = y(s) into Egs.
(11), (12), noting thatw’ (m) |V ~w’(n) = —(—w’(n)" and
settingd (s) = k(s)/(—y'(s))" (whered(s) > 0,0< s < o),
then we formally arrived the following singular nonlinear
two-point boundary value problems:

P 20N
0(0)=0, 6'(0c)=0 (14)

wheref (s) = —k(s)|w’ (y(s))|V 1w’ (y(s)) denotes the gen-
eral diffusion flux.
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A general form of (13), (14) has been studied in [3,5-9]
in the form of

{Z”(x) =—f(x,z(x)), O<x<1
az(0) — Bz/(0) =0, yz(D+87(1) =0

wheref (x, z) is continuous and positive i{®, 1) x (0, +-00),
and lim,_,¢ f (x, z) = +o0. It has been shown that this prob-
lem under appropriate conditions gfix, z) has a unique
positive solution.

3. Solutions and discussions

Let6(s) be a solution of Egs. (13), (14) d0, o]. Then,
it may be proved that the problem has a unique positive
solution, which can be represented by the formula

1/N

} dr
1/N

} dr

wheref’(s) is positive and strictly decreasing(f, o). Con-
versely, it is easy to check that a positive and absolutely con-
tinuous solution for the integral equation (15) is the solution
of (8), (9). Utilizing the unique positive solution of two-point
boundary value problems (13), (14), we may construct the
solutionw(n) of Egs. (11), (12), and therefore we obtained
the solutionu(x, 1) = w(n) of diffusion equations (1), (2).
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Fig. 1. Temperature distribution fars) =s, N = 0.3-3.0.
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Egs. (13), (14) may be solved numerically for its special
cases ok(s) = s, and parameterdy ando by employing
the shooting technique. The numerical results are presented
in Figs. 1-8. It may be seen that for each fixed 0, N >0
ando, the problem has exactly one positive solution.

Figs. 1-5 show the solutions fer= 1, N = 0.3-3 and
a = 1-5. It may be seen that, for each fixedthe thermal
diffusion flux 6(s) is a decreasing function a¥, which
means that the profiles exhibited by a big power |aw
possess a smaller diffusion. For each fixed param¥ter
the thermal diffusion fluxd(s) decreases with an increase
of @. It means that on the interval ¢0, 1], a big « will
bring a small thermal diffusion. Noted thet! > s%2 for all
0 <oy < ap ands € (0, 1), which shows that the diffusion
flux 0 (s) increases with the increase/qf).

Figs. 6-8 reveal the character &€s) for o = 0.3-1.5,

N =3, ande = 1-5. It may be seen that the boundary
temperature has a very important effect on the temperature
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Fig. 3. Temperature distribution fo¥ = 0.3, k(s) = s to s°.
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Fig. 4. Temperature distribution fo¥ = 2, k(s) = s1 to 5°.

0

0.6

—=— N=0.3
0.5 —aA— N=1.0

—e—N=2.0
0.4 —%— N=3.0
0.3
0.2+
0.1
0.0 T T T T T

0.0 0.2 0.4 0.6 0.8 10 S

Fig. 2. Temperature distribution fais) = 53, N =0.3-3.
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Fig. 6. Temperature distribution fai(s) =s, N = 3,0 = 0.3-1.5.
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Fig. 7. Temperature distribution for=0.3, N = 3, k(s) = s to s°.
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Fig. 8. Temperature distribution for= 1.5, N = 3, k(s) = s to s°.

distribution. The energy functioi(s) increases sharply with
the increasing ir. For 0< o < 1, 6(s) decreases with the
increase ofx. However, the behavior is quite opposite for
o>1.

4, Conclusions

Suitable similarity transformations were used to reduce
the generalizedv-diffusion equations to a class of singular
nonlinear boundary value problems. Similarity solutions are
analytically and numerically presented.

For each fixedx, the heat diffusion fluxd (s) decreases
with the increase oWV, i.e., a big power lawV will bring
a smaller diffusion. For each fixed paramefér on the
interval of[0, o], the heat diffusion flu¥ (s) decreases with
increase ofw, i.e., the heat diffusion increases with the
increase irk(s).

The boundary temperatusehas a very important effect
on the heat distribution. The energy functi@€) increases
sharply with the increasing im. For 0 < o < 1, 6(s)
decreases with the increasecof However, the behavior is
quite opposite for > 1.
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