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Abstract

Suitable similarity transformations were used for reducing the generalizedN-diffusion equations to a class of singular nonlinear bound
value problems. Similarity solutions are presented analytically and numerically. The results indicated that for each fixedα, the general
diffusion fluxθ(s) decreases with the increase of the power lawN and sharply with the increase ofσ . For 0< σ � 1, θ(s) decrease with the
increase ofα, however, the behavior is quite opposite forσ > 1.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Transfer problems are of great interest in a wide ra
of natural problems and industrial applications. In the se
that some entity is transferred under the gradient o
concentration-like quantity, we have, for the processe
this nature, the general relationQ = A · B . HereQ is the
flux density vector,B is the vector function of concentration
like gradients, andA is a coefficient in the function of time
position and/or concentration.

In this paper we consider a generalized form of d
fusion for which B = |∇u|N−1∇u and A = k(u). This
study serves as an introduction to further works deal w
the concentration-dependentN -diffusion and certain forms
of space-dependentN -diffusion. These more complicate
types ofN -diffusion are immediately relevant to physic
problems of interest, including the unsteady vertical h
transfer from a horizontal surface by (turbulent) free c
vection, and the unsteady turbulent flow of a liquid with
free surface over a plane [1].
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The one-dimensional (1-D) form of theN -diffusion
equation is

[
k(u)|ux|N−1ux

]
x

= ut in G (1)

u(0, t) = σ, 0 < t � T , u(x, 0) = 0, x > 0, (2)

whereG = {(x, t): x > 0, 0 < t � T }, k(u) � 0 in G. We
limit ourselves into the physical meaning ofN > 0. The
problem can be thought of the unsteady heat conductio
a semi-infinite mediumx > 0, initially at zero temperature
When timet > 0, temperatureσ is applied and maintaine
at the extremityx = 0, whereu denotes temperature, an
D(u) = −k(u)|ux|N−1ux is the heat density per unit area.

Recently, Wang [2] and Zheng [4] have considered so
generalized diffusion equations similar to (1) at cert
initial and boundary conditions. Existence and uniquen
results for a positive solution are analytically establish
by employing the similarity transformation and perturb
tion technique. However, the behavior and mechanism
diffusion and transfer are not understood at present t
It may be seen that, whenN 	= 1, the generalized diffu
sion equation (1) is super-nonlinear because of the t
k(u)|ux |N−1ux (N > 0, N 	= 1). Therefore, the problem i
difficult to study analytically and numerically. In prese
work, the purpose is to study the transfer behavior
Eqs. (1), (2), and the special emphasis is given to the for
Elsevier SAS. All rights reserved.
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lation of the generalizedN -diffusion equations, which pro
vide similarity solutions.

2. Converting into two-point boundary value problem

2.1. Similarity transformation

Since the restriction of the classical solution is b
irksome and unnatural in many instances, we shall deal
the solutions that may not have a derivative everywher
is convenient to present our problem in a so-called w
formulation.

We call a functionu(x, t) is a solution of Eqs. (1), (2), i
u(x, t) is continuous inG = {(x, t): x > 0, 0 < t � T }, with
limx→0 u = σ and limt→0 u = 0 a.e. (almost everywhere
x > 0, andu(x, t) admits a weak first derivatives whic
are locally integrable inG. Functionf (u) = k(u)|ux |N−1ux

is locally integrable inG. And for all sufficiently ‘good’
functionψ(x, t) ∈ C1

0(G) (whereC1
0(G) denote the class o

first continuously differentiable function that vanish on t
exterior of a bounded set) such that∫∫
G

{
ψt u − ψxf (u)

}
dx dt = 0 (3)

Setting u(x, t) = w(η) and ψ(x, t) = g(t)φ(η), η =
Cxγ tβ . WhereC, γ , andβ are constants to be determine
Substituting the above expressions into (3), by settingC =
γ = 1, andβ = −1/(N + 1) yields∫

g(t)t−(1+β) dt

∫
φ′(η)

{
βηw(η) − f

(
w(η)

)
dη

}
+ (

g′(t) · t−β dt
)∫

φ(η)w(η) dη = 0 (4)

Integrating
∫

g′(t) · t−β dt by parts∫
φ′(η)

{−βηw(η) + f
(
w(η)

)
dη

}
−

∫
βφ(η)w(η) dη = 0 ∀φ ∈ C1

0(0,∞) (5)

Putting

−
∫

φ(η)w(η) dη =
∫

φ′(η)

η∫
0

w(s) ds dη (6)

we obtain

∫
φ′(η)

[
−βηw(η) + f

(
w(η)

) + β

η∫
0

w(s) ds

]
dη = 0

∀φ ∈ C1
0(0,∞) (7)

Integrating Eq. (7) by parts again and noting∀φ ∈
C1(0,∞) yields
0
∫ [
−βηw(η) + f

(
w(η)

) + β

η∫
0

w(s) ds

]′
φ(η) dη = 0

∀φ ∈ C1
0(0,∞) (8)

Eq. (8) implies[
−βη

(
w(η)

) + f
(
w(η)

) + β

η∫
0

w(s) ds

]′
≡ 0 (9)

It is now easy to see that

f
(
w(η)

) − βηw(η)

= −β

η∫
0

w(s) ds + D a.e. inη > 0 (10)

Upon a possible redefinition on a set of measure zero
f [w(η)] − βηw(η) is absolutely continuous locally inη >

0, and (ii) (f [w(η)] − βηw(η))′ = −βw(η) holds almost
everywhere inη > 0.

As w(η) is an absolutely continuous locally inη > 0,
by hypothesis onu(x, t), it follows from (i), equation (ii)
is equivalent to(
f

(
w(η)

))′ = βηw′(η) a.e. inη > 0

i.e., the nonlinear boundary value problem is derived as[
(N + 1)k

(
w(η)

)∣∣w′(η)
∣∣N−1

w′(η)
]′ = −η · w′(η)

(0 < η < +∞) (11)

w(0) = σ, w(+∞) = 0 (12)

Conversely, if w(η) is a solution of (11), (12), the
it follows from hypotheses (i) and (ii), and the functio
u(x; t) = w(η) must be the solution of generalized diffusi
problems (1), (2). Therefore, in what follows, we sh
pay our attention mainly on the nonlinear boundary va
problems (11), (12).

2.2. Inverse function formulation

Let s = w(η) be a solution to the nonlinear bounda
value problems (11), (12). Ifw(η) is strictly decreasing in
[0,+∞), then w′(+∞) = 0, and the functionη = y(s),
inverse to s = w(η), exists. We have alsos = w(y(s))

on (0, σ ) and η = y(w(η)) on (0,+∞). And w′(y(s)) =
1/y ′(s) holds in (0, σ ). Substitutingη = y(s) into Eqs.
(11), (12), noting that|w′(η)|N−1w′(η) = −(−w′(η))N and
settingθ(s) = k(s)/(−y ′(s))N (whereθ(s) > 0, 0< s < σ ),
then we formally arrived the following singular nonline
two-point boundary value problems:

θ ′′(s) = − 1

N + 1

(
k(s)

θ(s)

)1/N

(0 < s < σ) (13)

θ(0) = 0, θ ′(σ ) = 0 (14)

whereθ(s) = −k(s)|w′(y(s))|N−1w′(y(s)) denotes the gen
eral diffusion flux.
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A general form of (13), (14) has been studied in [3,5
in the form of{

z′′(x) = −f
(
x, z(x)

)
, 0 < x < 1

αz(0) − βz′(0) = 0, γ z(1) + δz′(1) = 0

wheref (x, z) is continuous and positive in(0, 1)×(0,+∞),
and limz→0 f (x, z) = +∞. It has been shown that this pro
lem under appropriate conditions onf (x, z) has a unique
positive solution.

3. Solutions and discussions

Let θ(s) be a solution of Eqs. (13), (14) on[0, σ ]. Then,
it may be proved that the problem has a unique pos
solution, which can be represented by the formula

θ(s) = − 1

N + 1

s∫
0

(s − t)

[
k(t)

θ(t)

]1/N

dt

+ s

N + 1

σ∫
0

[
k(t)

θ(t)

]1/N

dt (15)

whereθ ′(s) is positive and strictly decreasing in(0, σ ). Con-
versely, it is easy to check that a positive and absolutely c
tinuous solution for the integral equation (15) is the solut
of (8), (9). Utilizing the unique positive solution of two-poi
boundary value problems (13), (14), we may construct
solutionw(η) of Eqs. (11), (12), and therefore we obtain
the solutionu(x, t) = w(η) of diffusion equations (1), (2).

Fig. 1. Temperature distribution fork(s) = s, N = 0.3–3.0.

Fig. 2. Temperature distribution fork(s) = s3, N = 0.3–3.
Eqs. (13), (14) may be solved numerically for its spec
cases ofk(s) = sα , and parametersN andσ by employing
the shooting technique. The numerical results are prese
in Figs. 1–8. It may be seen that for each fixedα > 0, N > 0
andσ , the problem has exactly one positive solution.

Figs. 1–5 show the solutions forσ = 1, N = 0.3–3 and
α = 1–5. It may be seen that, for each fixedα, the thermal
diffusion flux θ(s) is a decreasing function ofN , which
means that the profiles exhibited by a big power lawN

possess a smaller diffusion. For each fixed parameteN ,
the thermal diffusion fluxθ(s) decreases with an increa
of α. It means that on the interval of[0, 1], a big α will
bring a small thermal diffusion. Noted thatsα1 > sα2 for all
0 < α1 < α2 ands ∈ (0, 1), which shows that the diffusio
flux θ(s) increases with the increase ofk(s).

Figs. 6–8 reveal the character ofθ(s) for σ = 0.3–1.5,
N = 3, and α = 1–5. It may be seen that the bounda
temperatureσ has a very important effect on the temperat

Fig. 3. Temperature distribution forN = 0.3, k(s) = s1 to s5.

Fig. 4. Temperature distribution forN = 2, k(s) = s1 to s5.

Fig. 5. Temperature distribution fork(s) = s5, N = 3, σ = 0.3–1.5.
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Fig. 6. Temperature distribution fork(s) = s, N = 3, σ = 0.3–1.5.

Fig. 7. Temperature distribution forσ = 0.3, N = 3, k(s) = s1 to s5.

Fig. 8. Temperature distribution forσ = 1.5, N = 3, k(s) = s2 to s5.

distribution. The energy functionθ(s) increases sharply wit
the increasing inσ . For 0< σ � 1, θ(s) decreases with th
increase ofα. However, the behavior is quite opposite f
σ > 1.
4. Conclusions

Suitable similarity transformations were used to red
the generalizedN -diffusion equations to a class of singul
nonlinear boundary value problems. Similarity solutions
analytically and numerically presented.

For each fixedα, the heat diffusion fluxθ(s) decreases
with the increase ofN , i.e., a big power lawN will bring
a smaller diffusion. For each fixed parameterN , on the
interval of[0, σ ], the heat diffusion fluxθ(s) decreases with
increase ofα, i.e., the heat diffusion increases with t
increase ink(s).

The boundary temperatureσ has a very important effec
on the heat distribution. The energy functionθ(s) increases
sharply with the increasing inσ . For 0 < σ < 1, θ(s)

decreases with the increase ofα. However, the behavior i
quite opposite forσ > 1.
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